Understanding molecular control of functional amyloidogenesis


  • Prof Stephen Matthews

    Imperial College London

Project summary

Under stress, bacteria switch to a lifestyle that is optimised towards survival, in which they form a community of cells usually attached to a surface, known as a biofilm. By collaborating in a biofilm, bacteria form a safe haven where they are protected from immune system detection and chemical onslaught from antibiotics. Biofilms also cause complications in the provision of clean drinking water, food processing and fouling of manufacturing processes. The formation of a viable biofilm is a highly regulated, complex process in which bacteria secrete a polymeric extracellular matrix. Amyloid fibrils are abundant in bacterial matrix, where they confer structural and organisational integrity due to their unique mechanical properties. Despite the usefulness of amyloids, they are often toxic to a cell when formed at the wrong time or place. Bacteria have devised elegant solutions to control inappropriate amyloid formation, and by using a multidisciplinary structural biology approach, Professor Matthews aims to unravel this extraordinary ability.