The genetics of the Drosophila mitochondrial DNA and its influence on evolution and disease

Year of award: 2016

Grantholders

  • Dr Hansong Ma

    University of Cambridge

Project summary

In addition to the nuclear genome, all animals have another genome packed inside the mitochondrion called mtDNA. This maternally inherited genome encodes important proteins for energy production. Mutations in mtDNA are responsible for over 50 mitochondrial diseases, affecting 1 in 4,300 of the UK population. 

Given that there are multiple copies of mtDNA in each cell, pathogenic mitochondrial mutations often arise among thousands of wild-type genomes. Once their percentage exceeds a certain threshold, it causes a phenotypic manifestation of the genetic defects. Selectivity in the transmission of functional versus pathogenic genomes in somatic cells affects the expression of disease phenotype as we age. Selective transmission in germline governs the inheritance of mtDNA mutations from mother to progeny, and in this way its evolution. 

I have developed some genetic tools for mitochondrial studies in Drosophila, which have a mitochondrial genome that is very similar to humans. By artificially mixing different genomes and following their transmission over generations, I will use Drosophila to investigate how mitochondrial mutations are inherited. I will also investigate how differences in mitochondrial genotypes contribute to broad-scale organismal phenotypes, such as longevity and fertility. These studies will advance our understanding of mitochondrial genetics and provide new insights into mitochondrial disease.