Collaborative network to define the molecular determinants of G protein-coupled receptors' clinical efficacy
Year of award: 2015
Grantholders
Prof Andrew Tobin
University of Leicester
Prof Patrick Sexton
Monash University
Prof Arthur Christopoulos
Monash University
Project summary
Many drugs, for example beta-blockers for the treatment of heart disease, act on a family of proteins in our body called G protein-coupled receptors (GPCRs). Despite some notable successes, most of the attempts to make drugs that act on GPCRs have failed. Since GPCRs are involved in many human diseases, the failure of the pharmaceutical industry to find ways to make drugs that work on GPCRs has been a serious barrier to the development of new medicines. If we could find ways to make drugs that act on GPCRs we could unlock the door to many new medicines.
By drawing together leading scientists from around the world, we will ask what are the molecular features that make drugs able to act on GPCRs. We will focus on the muscarinic receptor family, a GPCR family involved in memory loss in Alzheimer’s disease and in schizophrenia.
We will reveal how to make drugs that act on GPCRs generally and also address how, by specifically targeting the muscarinic receptor family, we can make drugs that treat memory loss in Alzheimer’s disease and treat symptoms of schizophrenia.