Genome study identifies genetic variant linked to tuberculosis susceptibility in Africans
Scientists have identified a genetic variant that increases susceptibility to tuberculosis (TB) in African populations using a technique known as a genome-wide association (GWA) study. This is the first novel disease variant to be identified using this technique in Africans and demonstrates that such studies are viable in African populations, which have a high degree of genetic diversity.
Over the past few years, GWA studies, such as the Wellcome Trust Case Control Consortium, have been increasingly effective at identifying genetic variants that increase susceptibility to diseases. The studies involve analysing hundreds of thousands of genetic markers across the human genomes in search of variants found in patients (cases) but not in healthy volunteers (controls).
So far, over 150 different studies have successfully identified genetic variants using this technique, but the vast majority - between 95 and 98 per cent - have been only in people of European ancestry. The genetic diversity of African populations makes GWA studies far more complicated and had even led some researchers to question whether these studies would work in such populations.
Researchers carried out a GWA study, and replicated their findings, using over 11,000 samples - 3,699 cases and 7,726 controls - from Ghana, The Gambia and Malawi as part of the African TB Genetics Consortium and the Wellcome Trust Case Control Consortium in search of genetic variants that increase susceptibility to TB.
TB is one of the world's most deadly diseases, caused by the bacterium Mycobacterium tuberculosis. One third of the world's population are believed to be infected with M. tuberculosis. Each year, at least nine million people are in need of treatment for TB, and more than two million people die from the disease.
The results of the study, led by Professor Adrian Hill from the University of Oxford, UK, and Professor Rolf Horstmann from the Bernhard Nocht Institute for Tropical Medicine in Hamburg, Germany, are published today in the journal 'Nature Genetics'.
Dr Fredrik Vannberg from the Wellcome Trust Centre for Human Genetics at the University of Oxford says: "Our challenges here were two-fold. We were looking for human genetic variants affecting susceptibility to a pathogen which itself differs genetically from region-to-region, and we were searching for these variants in African populations, which are genetically very diverse."
The researchers identified a genetic variant on chromosome 18, located in a 'gene desert', a region composed mainly of so-called 'junk DNA', which suggested that the variant itself was not a gene, but was possibly involved in gene regulation. The surrounding area appears to be highly conserved - in other words, it is relatively unchanged across a number of species - which implies that the region plays an important role in the body's function.
Professor Adrian Hill explains: "Although we know of other genetic variants which increase susceptibility to TB, this is the first to have been identified using a genome-wide association study. This is very important as it demonstrates that we can do these studies - which have been so successful in European populations - in African populations, which suffer the greatest burden from infectious diseases."
Although African populations are genetically very complex, the researchers believe that increasing sample sizes for GWA studies in Africa will prove productive.
"African populations are highly diverse," explains Professor Rolf Horstmann from the Bernhard Nocht Institute for Tropical Medicine. "In The Gambia, for example, there are at least seven main language groups, with each bearing a slightly different ethnic background. We believe this added complexity can be overcome by increasing the number of samples in the genome-wide studies will prove even more productive."
The findings are particularly relevant to the National Institutes of Health (NIH) in the US and the Wellcome Trust, who recently announced Human Heredity and Health in Africa Project (H3Africa), an ambitious $38 million partnership to discover how genes and the environment interact in the development of cancer, heart disease, malaria and other diseases in African populations.
"This is a very important milestone in reducing the inequity that currently exists in the use of genome-wide approaches, including GWA studies, to understand the genetic basis of diseases that disproportionately affect African people," says Dr Charles Rotimi, Director of the Center for Research on Genomics and Global Health at the National Human Genome Research Institute. Dr Rotimi will provide scientific leadership for the NIH's portion of the H3Africa partnership.
"The approach and findings from this study for TB, and previous research from the MalariaGEN project, provide proof-of-principle that genome-wide approaches can yield fruitful results in African populations and sets a good precedent for the H3Africa initiative."
Reference
The African TB Genetics Consortium and The Wellcome Trust Case Control Consortium. Genome-wide association analyses identifies a susceptibility locus for tuberculosis on chromosome 18q11.2. Nat Gen 2010 [Epub ahead of print].
About the Medical Sciences Division
The University of Oxford's Medical Sciences Division is one of the largest biomedical research centres in Europe. It represents almost one-third of the University of Oxford's income and expenditure, and two-thirds of its external research income. Oxford's world-renowned global health programme is a leader in the fight against infectious diseases (such as malaria, HIV/AIDS, tuberculosis and avian flu) and other prevalent diseases (such as cancer, stroke, heart disease and diabetes). Long-term studies of patients around the world are supported by basic science at Oxford and have led to many exciting developments, including potential vaccines for tuberculosis, malaria and HIV, which are in clinical trials.
About the Wellcome Trust Centre for Human Genetics
The Wellcome Trust Centre for Human Genetics was established to undertake research into the genetic basis of common diseases.The scientific objective of the Centre is to explore all aspects of the genetic susceptibility of disease.The Centre houses multi-disciplinary research teams in human genetics, functional genomics, bioinformatics, statistical genetics and structural biology.
About the Bernhard Nocht Institute for Tropical Medicine
The Bernhard Nocht Institute for Tropical Medicine is Germany's largest institution for research, services and training in the field of tropical diseases and emerging infections. The current research focus is on malaria, haemorrhagic fevers, tuberculosis and tissue nematodes. Equipped with laboratories of the highest biosafety level (BSL4), the institute serves as the German National Reference Centre for all tropical pathogens, reference laboratory for SARS and WHO Collaborazting Centre for haemorrhagic-fever viruses. In co-operation with the Ghanaian Ministry of Health and the University of Kumasi, it runs a modern research and training center in the West African rainforest, which is also available to external research groups.
About the Wellcome Trust
The Wellcome Trust is a global charity dedicated to achieving extraordinary improvements in human and animal health. It supports the brightest minds in biomedical research and the medical humanities. The Trust's breadth of support includes public engagement, education and the application of research to improve health. It is independent of both political and commercial interests.