Understanding the infection processes of bluetongue virus as a model of complex, non-enveloped orbiviruses: viruses with segmented double-stranded RNA genomes and multilayered capsids

Grantholders

  • Prof Polly Roy

    London School of Hygiene and Tropical Medicine

Project summary

Professor Roy's main aim is to understand how complex, non-enveloped orbiviruses (family Reoviridae) successfully invade host cells, replicate and cause disease, and hence to understand how to better control virus outbreaks. The studies address the most challenging key stages of the orbivirus life cycle: how it breaches the plasma membrane of the host cell to deliver a large capsid into the cytoplasm, how it regulates the release of newly synthesised transcripts from the capsid into the cytoplasm, and how transcription complexes become precisely located at the capsid vertices and, lastly, how newly assembled subviral particles exit from their assembly site to leave the host cell. Together with a reverse genetics system that allows targeted mutations in the viral genome to dissect replication events of these complex capsid viruses, and the latest imaging technologies, Professor Roy will use advanced techniques pioneered in her laboratory: an in vitro cell-free infectious particle assembly system, for a complex dsRNA virus. The use of these hybrid approaches is allowing new findings in the biology of viruses and cells that would not have been possible even a few years ago.